Posts tagged with "EinsteinianPhysics"

A case for conceptual approaches in general relativity education
News · 02 January 2023
What is the value of conceptual approaches in general relativity education? In my latest opinion piece, I argue that we need to give students more opportunities to reason qualitatively and probe their physical intuition.

Why Can't You Escape a Black Hole?
News · 26 April 2022
Black holes sound like objects from a science fiction story! Matteo Luca Ruggiero and I wrote an explainer that was reviewed and edited by kids via Frontier for Young Minds. How cool is that? Please share with the kids in your life and let us know what you think 🤓

What is Einsteinian physics?
FAQ · 14 April 2022
Einsteinian physics is a branch of modern physics that comprises our current-bast understanding of the universe. The term “Einsteinian physics” is a semantic convenience and stems from Albert Einstein’s fundamental role in developing both the theory of relativity and quantum mechanics. Einsteinian physics is based on these two theories that describe space, time, and gravity at cosmic scales and the interactions of matter at subatomic scales.

What is free fall? 
FAQ · 13 April 2022
In Newtonian physics, a freely falling object moves only under the influence of the force of gravity. In Einsteinian physics, there is no force of gravity, and a freely falling body has no force acting on it. According to this view, freely falling objects follow geodesic curves through spacetime. In both Newtonian and Einsteinian physics, freely falling bodies experience weightlessness. 

What is general relativity?
FAQ · 13 April 2022
General relativity is Albert Einstein’s theory of space, time, and matter and comprises our current best understanding of gravity. According to general relativity, gravity is not a force but a geometric phenomenon: matter tells spacetime how to curve, and curved spacetime tells matter how to move. Einstein’s field equations capture this dynamic interplay between matter and spacetime geometry. 

What is gravity?
FAQ · 12 April 2022
Isaac Newton described gravity as an attractive force between massive objects that causes the acceleration of falling bodies. Albert Einstein described gravity as a consequence of the curved geometry of space and time. Einstein’s theory has a greater explanatory scope than Newton’s theory because it predicts phenomena that Newton’s force model cannot explain. Examples of such phenomena are gravitational waves and gravitational time dilation. 

Modern Physics Education Seminar Series
News · 04 April 2022
We are excited to kickstart the International Modern Physics & Research in Education Seminar Series (IMPRESS). Our monthly seminars will give momentum to modern physics education and increase the visibility of physics education research (PER). Join us 😎

Modern physics education in Denmark and around the world
News · 25 March 2022
Why should we modernise physics education in schools? I talked to Magnus Boye from the Department of Science Education about my research and new projects at the University of Copenhagen 🙃

Albert belongs in the classroom
News · 24 March 2022
Popular YouTube channel Physics High has reviewed our book Teaching Einsteinian Physics in Schools. Part of the review contains an interview with David Blair and me where we argue for the value of modernising the physics curriculum 🤓

ChatPhysics Author Q&A Einsteinian Physics
News · 29 January 2022
ChatPhysics invited us to an author Q&A of Teaching Einsteinian Physics in Schools. Missed the event? No worries, you can watch the recording or read the book review over at ChatPhysics 😎

Show more